Single-step holographic fabrication of large-area periodically corrugated metal films.

نویسندگان

  • Mengqian Lu
  • Bala Krishna Juluri
  • Yanhui Zhao
  • Yan Jun Liu
  • Timothy J Bunning
  • Tony Jun Huang
چکیده

We have developed a simple, high-throughput, and cost-effective method to fabricate one-dimensional and two-dimensional periodically corrugated silver films over centimeter scale areas. This fabrication uses a single-step holographic patterning technique with laser intensities as low as 88.8 mW/cm(2) to deposit silver nanoparticles directly from solution to create gratings with periodicities of 570 nm. A dip in the transmission spectrum for these samples is observed due to certain visible wavelengths coupling to surface plasmon polaritons (SPPs) and the peak wavelength of this dip has a linear relationship with the surrounding material's refractive index (RI) with a sensitivity of 553.4 nm/RIU. The figure of merit (the ratio of refractive index sensitivity to the full width at half maximum (FWHM)) is typically in the range of 12-23. Our technique enables single-step fabrication of uniform, sub-wavelength periodic metal structures over a large area with low cost. Such sub-wavelength periodic metal structures are promising candidates as disposable sensors in applications such as affordable environmental monitoring systems and point-of-care diagnostics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Growth and Characterization of Thin MoS2 Films by Low- Temperature Chemical Bath Deposition Method

Transition metal dichalcogenide (TMDC) materials are very important inelectronic and optical integrated circuits and their growth is of great importance in thisfield. In this paper we present growth and fabrication of MoS2 (Molibdan DiSulfide)thin films by chemical bath method (CBD). The CBD method of growth makes itpossible to simply grow large area scale of the thin la...

متن کامل

Planar plasmonic terahertz waveguides based on periodically corrugated metal films

We demonstrate that a one-dimensional periodically corrugated metal film can be used to create planar terahertz (THz) waveguides. The periodic corrugation is in the form of rectangular blind holes (i.e. holes that do not completely perforate the metal film) that are fabricated using a multilayer construction. The approach allows for the creation of structures in which the hole depth can be more...

متن کامل

Fabrication of Photodetectors using Transparent Carbon Nanotube Films

Carbon nanotubes are promising nanoscale materials for novel electrical, mechanical, chemical, and biological device and sensors based on its outstanding properties. Single walled carbon nanotubes can be either semiconducting or metallic material depending on its structures. However, controlling the structure is quite challenging with current technologies. For the network formation of the singl...

متن کامل

Extraordinary optical transmission through multi-layered systems of corrugated metallic thin films.

Optical transmission through multi-layered systems of corrugated metallic thin films is investigated by rigorous electromagnetic simulations based on an exact Green tensor method. Compared to a single metal slab of equivalent thickness and volume, it was found that the multi-layered system can significantly impede the field decay, often leading to transmission greater than that expected from th...

متن کامل

Leaky-Wave Radiations by Modulating Surface Impedance on Subwavelength Corrugated Metal Structures

One-dimensional (1D) subwavelength corrugated metal structures has been described to support spoof surface plasmon polaritons (SPPs). Here we demonstrate that a periodically modulated 1D subwavelength corrugated metal structure can convert spoof SPPs to propagating waves. The structure is fed at the center through a slit with a connected waveguide on the input side. The subwavelength corrugated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of applied physics

دوره 112 11  شماره 

صفحات  -

تاریخ انتشار 2012